Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of f(0) so that ((-ex +2x)/x)may be continuous at x = 0 is
Q. The value of
f
(
0
)
so that
x
(
−
e
x
+
2
x
)
may be continuous at
x
=
0
is
4641
233
VITEEE
VITEEE 2008
Continuity and Differentiability
Report Error
A
l
o
g
(
2
1
)
15%
B
0
16%
C
4
9%
D
- 1 + log 2
60%
Solution:
f
(
x
)
=
x
−
e
x
+
2
x
=
x
1
[
−
(
1
+
1
!
x
+
2
!
x
2
+
3
!
x
3
+
..
)
+
1
+
1
!
l
o
g
2
x
+
2
!
(
b
g
2
)
2
x
2
+
3
!
(
l
o
g
2
)
3
x
3
+
..
]
f
(
x
)
=
l
o
g
2
−
1
+
2
!
x
{
(
l
o
g
2
)
2
−
}
<
b
r
/
>
+
3
!
x
2
{
(
l
o
g
2
)
3
−
1
}
+
....
Putting
x
=
0
, we get
f
(
0
)
=
l
o
g
2
−
1
+
0
+
0
+
....
=
−
1
+
l
o
g
2.