Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ( displaystyle∑k=0100 (k+3/(k+1) !+(k+2) !+(k+3) !))+(1/(103) !) is equal to
Q. The value of
(
k
=
0
∑
100
(
k
+
1
)!
+
(
k
+
2
)!
+
(
k
+
3
)!
k
+
3
)
+
(
103
)!
1
is equal to
334
86
Binomial Theorem
Report Error
A
1
B
2
1
C
100
D
101
Solution:
k
=
0
∑
100
(
(
k
+
1
)!
+
(
k
+
2
)!
+
(
k
+
3
)!
k
+
3
)
=
k
=
0
∑
100
(
k
+
1
)!
[
1
+
k
+
2
+
(
k
+
3
)
(
k
+
2
)]
(
k
+
3
)
=
k
=
0
∑
100
(
k
+
1
)!
(
k
2
+
6
k
+
9
)
k
+
3
=
∑
(
k
+
1
)
(
k
+
3
)
2
k
+
3
=
k
=
0
∑
100
(
k
+
3
)
(
k
+
1
)!
1
=
k
=
0
∑
100
(
k
+
3
)!
k
+
2
=
(
k
+
3
)
−
1
=
k
=
0
∑
100
(
k
+
2
)!
1
−
(
k
+
3
)!
1
=
2
!
1
−
(
103
)!
1
∴
S
=
2
1
⇒
B