Putting x=y1, we get L=limit=y→0lim(na1y+a2y+.....+any)n/y(∵x→∞y→0) ∴logeL=y→0limyn.logen1(a1y+a2y+.....+any)(00) =ny→0lim1a1y+a2y+.....+any(a1yloga1+a2yloga2+.....+anylogan) =n.nlog(a1a2....an) ∴logL=log(a1.a2.....an)⇒L=a1.a2.a3......an