L=x→∞limxn(2xn)ex1−(3xn)ex1 =x→∞limxn(3)exxn((32)exxn−1)
Now, x→∞limexxn=x→∞limexn!=0
(Differentiating numerator and denominator n times for L'Hospital's rule)
Hence, L=x→∞lim(3)xxxnx→∞limexxn((32)exxn−1)x→∞limex1 =1×log(2/3)×0=0