Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle limn→∞ [(n/n2+12)+(n/n2+22)+ ldots+(1/n2+2n)] is
Q. The value of
n
→
∞
lim
[
n
2
+
1
2
n
+
n
2
+
2
2
n
+
…
+
n
2
+
2
n
1
]
is
4849
192
WBJEE
WBJEE 2009
Integrals
Report Error
A
4
π
0%
B
lo
g
2
0%
C
0
0%
D
1
100%
Solution:
n
→
∞
lim
[
n
2
+
1
2
n
+
n
2
+
2
2
n
+
…
+
n
2
+
n
2
n
]
=
n
→
∞
lim
r
=
1
∑
n
n
2
+
r
2
n
=
n
→
∞
lim
n
1
r
=
1
∑
n
1
+
(
n
r
)
2
1
=
0
∫
1
1
+
x
2
d
x
=
[
t
a
n
−
1
x
]
0
1
=
4
π