Let I=x→0limxsinxcoshx−cosx[00 form ]
Now, applying L'Hospital's rule, we get I=x→0limxcosx+sinxsinhx+sinx[00 form ] [∵dxd(coshx)=sinhx]
Again, applying L'Hospital's rule, we get I=x→0limx(−sinx)+cosx+cosxcoshx+cosx [∵dxd(sinhx)=coshx] ⇒I=x→0lim2cosx−xsinxcoshx+cosx=2cos(0)−0cosh(0)+cos(0) =21+1=1 [∵cosh(0)=1 and cos(0)=1] ⇒I=1