Let the roots of the equation be p,q.
Let S=p2+q2 =(p+q)2−2pq… (i)
Given equation is x2−(sinα−2)x−(1+sinα)=0 ∴p+q=(sinα−2),pq=−(1+sinα) From Eq. (i), S=(sinα−2)2+2(1+sinα) =sin2α−4sinα+4+2+2sinα =sin2α−2sinα+6 ⇒S=(sinα−1)2+5
This is least when sinα−1=0 ⇒α=2π