Let A=∣∣a2cosnxsinnxacos(n+1)xsin(n+1)x1cos(n+2)xsin(n+2)x∣∣ =a2[sin(n+2)xcos(n+1)x−cos(n+2)xsin(n+1)x] −a[sin(n+2)xcosnx−cos(n+2)xsinnx] +1[sin(n+1)xcosnx−cos(n+1)xsinnx] =a2[sin(n+2−n−1)x]−a[sin(n+2−n)x]+[sin(n+1−n)x] =a2sinx−asin2x+sinx
Thus the value of the determinant is independent of n