Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ((5050) ∫ limits01(1-x50)100 d x/∫ limits01(1-x50)101 d x) is ...
Q. The value of
0
∫
1
(
1
−
x
50
)
101
d
x
(
5050
)
0
∫
1
(
1
−
x
50
)
100
d
x
is ...
1650
178
JEE Advanced
JEE Advanced 2006
Report Error
Answer:
5051
Solution:
We have
I
=
0
∫
1
(
1
−
x
50
)
(
1
−
x
50
)
100
d
x
=
0
∫
1
(
1
−
x
50
)
100
d
x
−
0
∫
1
x
x
49
(
1
−
x
50
)
100
d
x
Therefore,
I
1
=
0
∫
1
x
x
49
(
1
−
x
50
)
100
d
x
1
−
x
50
=
t
⇒
−
50
x
49
d
x
=
d
t
⇒
x
49
d
x
=
50
−
d
t
=
(
−
50
x
)
101
(
1
−
x
50
)
101
∣
∣
0
1
+
5050
1
0
∫
1
1
(
1
−
x
50
)
101
d
x
Now,
I
=
−
5050
1
I
+
0
∫
1
(
1
−
x
50
)
100
d
x
(
5050
5051
)
0
∫
1
(
1
−
x
50
)
101
d
x
=
0
∫
1
(
1
−
x
50
)
100
d
x
5051
=
5050
1
0
∫
1
(
1
−
x
50
)
100
d
x
0
∫
50
(
1
−
x
101
d
x