Let E=3sin(21cos−191)+4cos(21cos−181)
Put cos−191=θ and cos−181=ϕ,
where θ,ϕ∈(0,2π) ∴E=3sin2θ+4cos2ϕ .... (1)
Now, cosθ=91=1−2sin22θ ⇒sin2θ=32 ....(2)
and cosϕ=81=2cos22ϕ−1 ⇒cos2ϕ=43 ....(3) ∴ On using equation (2) and equation (3) in (1), we get E=3(32)+4(43)=2+3=5.