The value of (1+sin92π−icos92π1+sin2π/9+icos2π/9) =(1+sin(2π−185π)−icos(2π−185π)1+sin(2π−185π)+icos(2π−185π))3 =(1+cos185π−isin185π1+cos185π+isin185π)3 =(2cos2365π−2isin365π⋅cos365π2cos2365π+2isin365πcos365π)3 =(cos365π−isin365πcos365π+isin365π)3 =(e−i5π/36ei5π/36)3=(ei5π/18)3 =cos65π+isin5π/6 =−23+i/2