Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value 2 tan-1 [√(a-b/a+b) tan(θ/2)] is equal to
Q. The value
2
t
a
n
−
1
[
a
+
b
a
−
b
t
an
2
θ
]
is equal to
1975
232
Inverse Trigonometric Functions
Report Error
A
co
s
−
1
(
a
+
b
cos
θ
a
cos
θ
+
b
)
59%
B
co
s
−
1
(
a
cos
θ
+
b
a
+
b
cos
θ
)
9%
C
co
s
−
1
(
a
+
b
cos
θ
a
cos
θ
)
27%
D
co
s
−
1
(
a
cos
θ
+
b
b
cos
θ
)
5%
Solution:
2
t
a
n
−
1
[
a
+
b
a
−
b
t
an
2
θ
]
=
co
s
−
1
[
1
+
(
a
+
b
a
−
b
)
t
a
n
2
2
θ
1
−
(
a
+
b
a
−
b
)
t
a
n
2
2
θ
]
[
∵
2
t
a
n
−
1
x
=
co
s
−
1
1
+
x
2
1
−
x
2
]
=
co
s
−
1
[
(
a
+
b
)
+
(
a
−
b
)
t
a
n
2
2
θ
(
a
+
b
)
−
(
a
−
b
)
t
a
n
2
2
θ
]
=
co
s
−
1
[
a
(
1
+
t
a
n
2
2
θ
)
+
b
(
1
−
t
a
n
2
2
θ
)
a
(
1
−
t
a
n
2
2
θ
)
+
b
(
1
+
t
a
n
2
2
θ
)
]
=
co
s
−
1
⎣
⎡
a
+
b
(
1
+
t
a
n
2
2
θ
1
−
t
a
n
2
2
θ
)
1
+
t
a
n
2
2
θ
a
(
1
−
t
a
n
2
2
θ
)
+
b
⎦
⎤
=
co
s
−
1
[
a
+
b
cos
θ
a
cos
θ
+
b
]