Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The true set of real values of x for which the function, f(x)=x ln x-x+1 is positive is
Q. The true set of real values of
x
for which the function,
f
(
x
)
=
x
ln
x
−
x
+
1
is positive is
174
124
Application of Derivatives
Report Error
A
(
1
,
∞
)
B
(
1/
e
,
∞
)
C
[
e
,
∞
)
D
(
0
,
1
)
∪
(
1
,
∞
)
Solution:
f
(
x
)
=
x
ln
x
−
x
+
1
⇒
f
′
(
x
)
=
1
+
ln
x
−
1
 HenceÂ
f
(
x
)
 isÂ
↑
 forÂ
x
>
1
 andÂ
f
(
x
)
 isÂ
↓
 forÂ
0
<
x
<
1
⇒
f
(
1
)
 is the least valueÂ
∴
f
(
x
)
>
f
(
1
)
 for allÂ
x
>
1
 as well asÂ
0
<
x
<
1
∴
x
ln
x
−
x
+
1
>
0
 (fÂ
(
1
)
=
0
)
⇒
 (D)Â