Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The total number of matrices A = beginpmatrix0&2y&1 2x&y&-1 2x&-y&1 endpmatrix ,(x,y ∈ R, x ≠ y) for which ATA = 3I3 is :
Q. The total number of matrices
A
=
⎝
⎛
0
2
x
2
x
2
y
y
−
y
1
−
1
1
⎠
⎞
,
(
x
,
y
∈
R
,
x
=
y
)
for which
A
T
A
=
3
I
3
is :
3264
191
JEE Main
JEE Main 2019
Matrices
Report Error
A
6
19%
B
2
22%
C
3
23%
D
4
37%
Solution:
A
T
A
=
3
I
3
⎝
⎛
0
2
y
1
2
x
y
−
1
2
x
−
y
1
⎠
⎞
⎝
⎛
0
2
x
2
x
2
y
y
−
y
1
−
1
1
⎠
⎞
=
⎝
⎛
3
0
0
0
3
0
0
0
3
⎠
⎞
⎝
⎛
8
x
2
0
0
0
6
y
2
0
0
0
3
⎠
⎞
=
⎣
⎡
3
0
0
0
3
0
0
0
3
⎦
⎤
8
x
2
=
3
6
y
2
=
3
x
2
=
3/8
y
2
=
1/2
x
=
±
8
3
;
y
=
±
2
1