Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The total number of distinct x ∈ R for which |x x2 1+x3 2 x 4 x2 1+8 x3 3 x 9 x2 1+27 x3|=10 is
Q. The total number of distinct
x
∈
R
for which
∣
∣
x
2
x
3
x
x
2
4
x
2
9
x
2
1
+
x
3
1
+
8
x
3
1
+
27
x
3
∣
∣
=
10
is
3247
167
JEE Advanced
JEE Advanced 2016
Report Error
Answer:
2
Solution:
∣
∣
x
2
x
3
x
x
2
4
x
2
9
x
2
1
+
x
3
1
+
8
x
3
1
+
27
x
3
∣
∣
=
10
⇒
∣
∣
x
2
x
3
x
x
2
4
x
2
9
x
2
1
1
1
∣
∣
+
∣
∣
x
2
x
3
x
x
2
4
x
2
9
x
2
x
3
8
x
3
27
x
3
∣
∣
=
10
⇒
x
3
∣
∣
1
2
3
1
4
9
1
1
1
∣
∣
+
x
6
∣
∣
1
2
3
1
4
9
1
8
27
∣
∣
=
10
⇒
2
x
3
+
12
x
6
=
10
⇒
6
x
6
+
x
3
−
5
=
0
⇒
(
6
x
3
−
5
)
(
x
3
+
1
)
=
0
⇒
x
3
=
6
5
,
x
3
=
−
1
So two real roots