Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The system of equations kx + (k + 1)y + (k - 1) z = 0 (k + 1)x + ky + (k + 2) z = 0 (k - 1)x + (k + 2)y + kz = 0 has a non-trivial solution for
Q. The system of equations
k
x
+
(
k
+
1
)
y
+
(
k
−
1
)
z
=
0
(
k
+
1
)
x
+
k
y
+
(
k
+
2
)
z
=
0
(
k
−
1
)
x
+
(
k
+
2
)
y
+
k
z
=
0
has a non-trivial solution for
538
89
Determinants
Report Error
A
exactly three real values of k.
B
exactly two real values of k.
C
exactly one real value of k.
D
infinite number of values of k.
Solution:
To have a non-trivial solution, we must have
∣
∣
k
k
+
1
k
−
1
k
+
1
k
k
+
2
k
−
1
k
+
2
k
∣
∣
=
0
⇒
2
k
+
1
=
0
⇒
k
=
2
−
1