Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum to n terms of the series 1+2(1+(1/n))+3(1+(1/n))2+ ldots is given by
Q. The sum to
n
terms of the series
1
+
2
(
1
+
n
1
)
+
3
(
1
+
n
1
)
2
+
…
is given by
101
139
Sequences and Series
Report Error
A
n
2
B
n
(
n
+
1
)
C
n
(
1
+
1/
n
)
2
D
None of these
Solution:
Let
S
be the sum of
n
terms of the given series and
x
=
1
+
1/
n
.
Then,
S
=
1
+
2
x
+
3
x
2
+
4
x
3
+
…
+
n
x
n
−
1
⇒
x
S
=
x
+
2
x
2
+
3
x
3
+
…
+
(
n
−
1
)
x
n
−
1
+
n
x
n
∴
S
−
x
S
=
1
+
[
x
+
x
2
+
…
+
x
n
−
1
]
−
n
x
n
⇒
S
(
1
−
x
)
=
1
−
x
1
−
x
n
−
n
x
n
⇒
S
(
−
1/
n
)
=
−
n
(
1
−
(
1
+
1/
n
)
n
)
−
n
(
1
+
1/
n
)
n
⇒
n
1
S
=
n
[
1
−
(
1
+
1/
n
)
n
+
(
1
+
1/
n
)
n
]
=
n
⇒
S
=
n
2