Given series is 2⋅31⋅21+3.42⋅22+4.53⋅23+…upto n terms
The n th term of the series is Tn=(n+1)(n+2)n⋅2n={(n+2)2⋅2n−(n+1)2n}
On putting n=1,2,3…, we get T1=2⋅321−221,T2=42⋅22−322,T3=52⋅23−423
.................
.................
On adding, we get Sn=T1+T2+T3+…+Tn ⇒Sn=(n+2)2⋅2n−22=(n+2)2n+1−1