Let S=1+2.2+3.22+4.23+......+100.299 ∴2S=1.2+2.22+3.23+......+99.299+100.2100
Subtracting, we get −S=1+1.2+1.22+1.23+.....+1.299−100.2100 =(1+2+22+......299)−100.2100 =2−11(2100−1)−100.2100=2100−1−100.2100 =2−11(2100−1)−100.2100 =2100−1−100.2100 ∴S=100.2100−2100+1 =99.2100+1