Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sum of the first 10 terms of the series 9 + 99 + 999 + …., is
Q. The sum of the first 10 terms of the series 9 + 99 + 999 + …., is
1988
243
MHT CET
MHT CET 2018
Report Error
A
8
9
(
9
10
−
1
)
10%
B
9
100
(
1
0
9
−
1
)
49%
C
1
0
9
−
1
14%
D
9
100
(
1
0
10
−
1
)
27%
Solution:
Let,
S
n
=
9
+
99
+
999
+
……
n
terms
⇒
S
n
=
(
10
−
1
)
+
(
100
−
1
)
+
(
1000
−
1
)
+
…
n
terms
⇒
S
n
=
(
10
+
1
0
2
+
1
0
3
+
……
n
terms
)
−
(
1
+
1
+
……
n
terms
)
⇒
S
n
=
10
−
1
10
(
1
0
n
−
1
)
−
n
[
∵
a
+
a
r
+
a
r
2
+
……
+
a
r
n
−
1
=
r
−
1
a
(
r
n
−
1
)
,
r
>
1
]
⇒
S
n
=
9
10
(
1
0
n
−
1
)
−
n
Put
n
=
10
⇒
S
10
=
9
10
(
1
0
10
−
1
)
−
10
=
9
10
(
1
0
10
−
1
−
9
)
=
9
10
(
1
0
10
−
10
)
=
9
100
(
1
0
9
−
1
)