Given, equation 6x6−25x5+31x4−31x2+25x−6=0 ⇒6(x6−1)−25x(x4−1)+31x2(x2−1)=0 ⇒(x2−1)[6(x4+x2+1)−25x(x2+1)+31x2]=0 ⇒(x2−1)[6x4−25x3+37x2−25x+6]=0
Either x2−1=0 ⇒x=+1,−1
or 6x4−25x3+37x2−25x+6=0 ⇒6(x4+1)−25x(x2+1)+37x2=0 ⇒6(x4+1)−25x(x2+1)+37x2=0 ⇒6(x2+x21)−25(x+x1)+37=0 ⇒6(x+x1)2−25(x+x1)+25=0 ⇒6(x+x1)2−15(x+x1)−10(x+x1)+25=0 ⇒3(x+x1)[2(x+x1)−5]−5[2(x+x1)−5]=0 ⇒[2(x+x1)−5][3(x+x1)−5]=0 ⇒ Either 2(x+x1)=5 or 3(x+x1)=5 ⇒2x2−5x+2=0 or 3x2−5x+3=0 ⇒2x2−4x−x+2=0 ∵3x2−5x+3=0 has no solution because D<0 ⇒2x(x−2)−1(x−2)=0 ⇒x=2,21
So, sum of all the rational roots λ=1−1+2+21=2.5