Given, 12+22+32+...+n213+23+33+...+(2n)3 =6n(n+1)(2n+1)4(2n)2(2n+1)2 [∵Σn3=4n2(n+1)2,Σn2=6n(n+1)(2n+1)] =6n(n+1)(2n+1)44n2(2n+1)2=n+16n(2n+1) n+112n2+6n=(12n−6)+n+16 ∵n+16 is an integer if n+1 is factor of 6. ∵n+1=1,2,3,6 ⇒=1,2,5
Sum of n=1+2+5=8