Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution set of the equation 4 x = x +[x], where x and [x] denote the fractional and integral parts of a real number ‘x’ respectively, is
Q. The solution set of the equation
4
{
x
}
=
x
+
[
x
]
,
where
{
x
}
and
[
x
]
denote the fractional and integral parts of a real number ‘x’ respectively, is
1378
210
Linear Inequalities
Report Error
A
{0}
9%
B
{
0
,
3
5
}
50%
C
[
0
,
∞
)
26%
D
none of these
14%
Solution:
Let
x
=
[
x
]
+
{
x
}
, the equation becomes
4
{
x
}
=
[
x
]
+
{
x
}
+
[
x
]
⇒
3
{
x
}
=
2
[
x
]
⇒
{
x
}
=
3
2
[
x
]
...(1)
∵
0
≤
{
x
}
<
1
⇒
0
≤
3
2
[
x
]
<
1
⇒
0
≤
[
x
]
<
2
3
and [x] in integer
∴
[x] = 0 or 1, from (1) {x} = 0 or
3
2
∴
x
=
0
+
0
or
1
+
3
2
⇒
x
=
0
or
3
5
The solution set is
x
∈
{
0
,
3
5
}