Given, log101log7(x+7+x)=0 ∴log7(x+7+x)=(101)0 ⇒log7(x+7+x)=1 ⇒(x+7+x)=71 ⇒x+7+x=7
On squaring both sides, we get (x+7)+x+2x2+7x=49 ⇒2x−42=−2x2+7x ⇒x−21=−x2+7x
Again, squaring both sides, we get x2+441−42x=x2+7x ⇒49x=441 ⇒x=49441 ⇒x=9