Given, dxdy+2ytanx=sinx .......(i)
Compare the equation (i) with the general equation dxdy+Py=Q
We find that, P = 2 tan x, Q = sin x
Now, integrating factor, I.F. is e∫Pdx=e∫2tanxdx =e2logsecx=elogsec2x ∴I.F.=sec2x
Now solution is,
y . (I.F.) = ∫ I.F. × Q + c ∴y.sec2x=∫sec2x.sinxdx+c ⇒y.sec2x=∫secx.tanxdx+c ⇒ysec2x=secx+c