Given differential equation is (y2+2x)dxdy=y<br/><br/>⇒dydx=(yy2+2x) ⇒dydx=y+y2x ⇒dydx−y2⋅x=y IF=e∫y2dy=e−2logy=y−2=y21
- Complete solution is x⋅y21=∫y⋅y21dy+C ⇒y2x=∫ydy+C=logey+C ⇒x=y2logey+cy2 At+x=1,y=1 then from Eq. (i), we get 1=0+C⇒C=1 ∴ From Eq. (i), we get x=y2(logey+1)
Which is the required solution.