Given, differential equation xdy−ydx=x2+y2dx…(i)
Putting, y=vx and differentiating w.r.t. x, we get dy=vdx+xdv… (ii)
From Eq. (ii), x(vdx+xdv)−vxdx=x2+(vx)2dx xvdx+x2dv−vxdx=x1+v2dx x2dv=x1+v2dx ⇒1+v2dv=xdx
Integrating on both sides, we get ln(v+1+v2)=lnx+C {∵∫1+x2dx=ln(x+1+x2)+C}
Putting v=xy, we get ln(xy+1+(xy)2)=lnx+C ln(xy+x1x2+y2)=lnx+C ln{x1(y+x2+y2)}−lnx=C ln{x2y+x2+y2}=C…(iii) [∵lna−lnb=lnba]
Given that, y=1,x=3 ∴ln{(3)21+(3)2+12}=C⇒ln{31+2}=C lnl=C or C=0[∵ln1=0]
Putting the value of C in Eq. (iii), we get ln{x2y+x2+y2}=0
or x2y+x2+y2=e0=1 y+x2+y2=x2
or x2−y=x2+y2
Squaring on both sides, we get (x2−y)2=x2+y2