Given differential equation can be rewritten as dxdy=2xyx2+y2
Put y=vx ⇒dxdy=v+xdxdv
Then, given differential equation becomes v+xdxdv=2xvxx2+v2x2 ⇒xdxdv=2v1+v2−v ⇒xdxdv=2v1−v2 ⇒1−v22vdv=xdx
On integrating, we get −log(1−v2)=logx+logc ⇒log(1−v2)−1=logxc ⇒(1−x2y2)−1=xc ⇒(x2x2−y2)−1=xc ⇒x2−y2x2=xc ⇒x=c(x2−y2)