Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation, e x ( x +1) dx +( ye y - xe x ) dy =0 with initial condition f(0)=0, is
Q. The solution of the differential equation,
e
x
(
x
+
1
)
d
x
+
(
y
e
y
−
x
e
x
)
d
y
=
0
with initial condition
f
(
0
)
=
0
, is
629
98
Differential Equations
Report Error
A
x
e
x
+
2
y
2
e
y
=
0
B
2
x
e
x
+
y
2
e
y
=
0
C
x
e
x
−
2
y
2
e
y
=
0
D
2
x
e
x
−
y
2
e
y
=
0
Solution:
put
x
e
x
=
t
(
e
x
+
x
e
x
)
d
y
d
x
=
d
y
d
t
∴
d
y
d
t
+
(
y
e
y
−
t
)
=
0
⇒
d
y
d
t
−
t
+
y
e
y
=
0
I.F.
e
−
∫
d
y
=
e
−
y
t
⋅
e
−
y
=
−
∫
y
e
y
e
−
y
d
y
x
e
x
e
−
y
=
−
2
y
2
+
C
f
(
0
)
=
0
⇒
C
=
0
;
2
x
e
x
e
−
y
+
y
2
=
0