Given, differential equation is dxdy+xlogexy=x1
It is a linear equation of the form dxdy+Py=Q
where P=xlogθx1 and Q=x1 ∴ Integrating factor, IF =e =e∫xlogex1dx =elog(logex) =logex ∴ Solution of differential equation is y×logex=∫x1logexdx ⇒y×logex=2(logθx)2+C...(i)
When y=1 and x=e, then 1×logee=2(logθe)2+C ⇒1=21+C ⇒C=21
On putting C=21 in Eq. (i), we get Y×logθx=2(logθx)2+21 ⇒2y=logex+logex1