Given equation can be rewritten as dxdy=eyex(ex−ey)⇒eydxdy=e2x−exey⇒eydxdy+exey=e2x Put ey=t⇒eydxdy=dxdt∴dxdt+ext=e2x On comparing with dydx+Pt=Q, we get P=ex and Q=e2x∴ If =e∫pdx=e∫exdx=eex Required solution is t.eex=∫e2xeexdx+C⇒eyeex=(ex−1)eex+C⇒ey=(ex−1)+Ce−ex