Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (d2 y/d x2)= sin 3 x+ex +x2 when y prime(0)=1 and y(0)=0 is
Q. The solution of the differential equation
d
x
2
d
2
y
=
sin
3
x
+
e
x
+
x
2
when
y
′
(
0
)
=
1
and
y
(
0
)
=
0
is
82
174
Differential Equations
Report Error
A
9
−
s
i
n
3
x
+
e
x
+
12
x
4
+
3
1
x
−
1
B
9
−
s
i
n
3
x
+
e
x
+
12
x
4
+
3
1
x
C
3
−
c
o
s
3
x
+
e
x
+
12
x
4
+
3
1
x
+
1
D
None of these
Solution:
Integrating the given differential equation, we have
d
x
d
y
=
3
−
c
o
s
3
x
+
e
x
+
3
x
3
+
C
1
but
y
′
(
0
)
=
1
so
1
=
(
−
3
1
)
+
1
+
C
1
⇒
C
1
=
1/3
.
Again integrating, we get
y
=
9
−
s
i
n
3
x
+
e
x
+
12
x
4
+
3
1
x
+
C
2
but
y
(
0
)
=
0
so
0
=
0
+
1
+
C
2
⇒
C
2
=
−
1
. Thus
y
=
9
−
s
i
n
3
x
+
e
x
+
12
x
4
+
3
1
x
−
1