Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation 1+x √(x2+y2) d x+ √(x2+y2)-1 y d y=0 is
Q. The solution of the differential equation
{
1
+
x
(
x
2
+
y
2
)
}
d
x
+
{
(
x
2
+
y
2
)
−
1
}
y
d
y
=
0
is
1500
211
Differential Equations
Report Error
A
x
2
+
2
y
2
+
3
1
(
x
2
+
y
2
)
3/2
=
c
B
x
−
3
y
3
+
2
1
(
x
2
+
y
2
)
1/2
=
c
C
x
−
2
y
2
+
3
1
(
x
2
+
y
2
)
3/2
=
c
D
None of these
Solution:
Rearranging the equation, we have
d
x
−
y
d
y
+
(
x
2
+
y
2
)
(
x
d
x
+
y
d
y
)
=
0
⇒
d
x
−
y
d
y
+
2
1
(
x
2
+
y
2
)
d
(
x
2
+
y
2
)
=
0
On integrating, we get
x
−
2
y
2
+
2
1
∫
t
d
t
=
c
,
{
t
=
(
x
2
+
y
2
)
}
or
x
−
2
y
2
+
3
1
(
x
2
+
y
2
)
3/2
=
c