Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of differential equation x (d y/d x)+y=x2 y4 is
Q. The solution of differential equation
x
d
x
d
y
+
y
=
x
2
y
4
is
513
159
Differential Equations
Report Error
A
y
3
1
=
3
x
2
+
c
x
3
13%
B
3
x
2
+
y
3
=
c
53%
C
x
2
=
y
3
+
c
13%
D
y
3
=
x
+
c
20%
Solution:
x
d
x
d
y
+
y
=
x
2
y
4
⇒
y
4
1
d
x
d
y
+
x
y
⋅
y
4
1
=
x
x
2
⇒
y
4
1
d
x
d
y
+
x
y
3
1
=
x
y
3
1
=
t
⇒
y
4
−
3
d
x
d
y
=
d
x
d
t
⇒
−
3
1
d
x
d
t
+
x
t
=
x
⇒
d
x
d
t
−
x
3
t
+
3
x
=
0
I.F.
=
e
−
∫
x
3
d
x
=
e
−
ℓ
n
x
3
=
x
3
1
⇒
−
3
x
3
1
d
x
d
t
+
x
4
t
=
x
2
1
⇒
d
(
3
x
3
−
t
)
=
x
2
1
d
x
⇒
−
3
x
3
t
=
−
x
1
+
c
⇒
t
=
3
x
2
−
3
c
x
3
(
∵
t
=
y
3
1
)
⇒
y
3
1
=
3
x
2
+
k
x
3