Q.
The smallest positive integral value of ′n′ such that [1+sin8π−icos8π1+sin8π+icos8π]n is purely imaginary is, n =
5858
187
KCETKCET 2009Complex Numbers and Quadratic Equations
Report Error
Solution:
[1+sin8π−icos8π1+sin8π+icos8π]n =[1+cosα−isinα1+cosα+isinα]n( Put α=2π−8π) =[2cos22α−2isin2αcos2α2cos22α+2isin2αcos2α]n =[cos2α−isin2αcosα+isin2α]n =(e2i2α)n=einα =ein(83π)=cos83nπ+isin83nπ
For n=4, we get imaginary part.