Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The sixth term of an A.P. a1, a2, a3, ldots . . . an is 2 . If the quantity a1 a4 a5 is minimum then the common difference of the A.P., is
Q. The sixth term of an A.P.
a
1
,
a
2
,
a
3
,
…
...
a
n
is 2 . If the quantity
a
1
a
4
a
5
is minimum then the common difference of the A.P., is
150
110
Sequences and Series
Report Error
A
3
2
B
5
8
C
3
1
D
9
2
Solution:
a
6
=
a
1
+
5
d
=
2
Now
P
=
a
1
a
4
a
5
=
a
1
(
a
1
+
3
d
)
(
a
1
+
4
d
)
=
(
2
−
5
d
)
(
2
−
2
d
)
(
2
−
d
)
=
2
(
4
−
16
d
+
17
d
2
−
5
d
3
)
Consider
f
(
d
)
=
−
5
d
3
+
17
d
2
−
16
d
+
4
[12th, 29-08-2010 P-1]
∴
f
′
(
d
)
=
−
15
d
2
+
34
d
−
16
, for minima,
f
′
(
d
)
=
0
⇒
d
=
3
2
,
5
8
f
′′
(
d
)
=
−
30
d
+
34
f
′′
(
3
2
)
=
−
20
+
34
>
0
⇒
d
=
3
2
gives minima