Given, lines are 3x−7=−16y+4=7z−6
and 3x−10=8y−30=54−z
The vector form of given equations are r=7i^−4j^+6k^+λ(3i^−16j^+7k^)
and r=10i^+30j^+4k^+μ(3i^+8j^−5k^)
On comparing these equations with r=a1+λb1 and r=a2+μb2, we get a1=7i^−4j^+6k^ a2=10i^+30j^+4k^ b1=3i^−16j^+7k^
and b2=3i^+8j^−5k^ b1×b2=∣∣i^33j^−168k7−5∣∣ =(80−56)i^+(21+15)j^+(24+48)k^ =24i^+36j^+72k^
Then ∣b1×b2∣=(24)2+(36)2+(72)2 =576+1296+5184 =7056=84 ∴ Shortest distance=∣∣∣b1×b2∣(a2−a1)⋅(b1×b2)∣∣ =∣∣84(3i^+34j^−2k^)⋅(24i^+36j^+72k^)∣∣ =∣∣8472+1224−144∣∣=∣∣841152∣∣=21288 units