x2−∣x+2∣+x>0
Case I If x+2≥0 x2−(x+2)+x>0{∵∣x∣={<br/><br/>x,<br/><br/>−x,​x≥0x<0<br/><br/>​} ⇒x2−2>0 ⇒(x−2​)(x+2​)=0 x∈[−2,−2​]∪[2​,∞]
Case II x+2<0 x2+(x+2)+x>0 ⇒x2+2x+2>0 ⇒(x+1)2+1>0 ⇒x<−2
Hence, the solution set is x∈(−∞,−2​)∪(2​,∞)