Given an+1=an+1;n=1,2,…….97 ∴a2=a1+1 a3=a1+2(a3=a2+1=a1+1+1=a1+2) ∥ ly a4=a1+3 a98=a1+97
hence a1,a2,a3,……...a98 form an A.P.
Also given Also given a1+a2+……..+a98=4949 298[2a1+97⋅1]=4949 [using Sn=2n(2a+n−1d) ⇒98a1+49×97=4949 ⇒98a1+4753=4949 ∴98a1=196⇒a1=2 now we have to find a2+a4+……+a98(49 terms ) ⇒249[2(a1+1)+49⋅2]=49(a1+1)+49⋅48 a1=2 ⇒49×3+49×48=49(3+48)=49×51=2499