Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The roots of the equation f(x)=a(x-b)(x-c)+b(x-c)(x-a)+c(x-a)(x-b)=0 ( a, b, c are distinct and real ) are always :
Q. The roots of the equation
f
(
x
)
=
a
(
x
−
b
)
(
x
−
c
)
+
b
(
x
−
c
)
(
x
−
a
)
+
c
(
x
−
a
)
(
x
−
b
)
=
0
(
a
,
b
,
c
are distinct and real ) are always :
154
102
Complex Numbers and Quadratic Equations
Report Error
A
positive
B
negative
C
real
D
unreal
Solution:
a
(
x
2
−
(
b
+
c
)
x
+
b
c
)
+
b
(
x
2
−
(
c
+
a
)
x
+
a
c
)
+
c
(
x
2
−
(
a
+
b
)
x
+
ab
)
=
0
(
a
+
b
+
c
)
x
2
−
2
x
(
ab
+
b
c
+
c
a
)
+
3
ab
c
=
0
D
=
4
(
ab
+
b
c
+
c
a
)
2
−
12
ab
c
(
a
+
b
+
c
)
=
4
[
a
2
b
2
+
b
2
c
2
+
c
2
a
2
+
2
ab
c
(
a
+
b
+
c
)
−
3
ab
c
(
a
+
b
+
c
)
]
=
4
[
a
2
b
2
+
b
2
c
2
+
c
2
a
2
−
ab
c
(
a
+
b
+
c
)
]
=
2
[
(
ab
−
b
c
)
2
+
(
b
c
−
c
a
)
2
+
(
c
a
−
ab
)
2
]
>
0