We have, 7n=(1+6)n =nC0+nC161+nC262+nC363+…+nCn6n =1+6n+62[nC2+nC36+…+nCn6n−2] =1+6n+36λ[ where, nC2+…+nCn6n−2=λ] ⇒7n−6n=36λ+1 ⇒7n−6n−50=36λ−49 ⇒7n−6n−50=36λ−72+23 ⇒7n−6n−50=36(λ−2)+23 ⇒7n−6n−50=36μ+23[ where λ−2=μ] ∴ When 7n−6n−50 is divided by 36, then remainder will be equal to 23 .