The relation R on the set of natural number N is defined by xRy⇔2x2−3xy+y2=0.∀x,y∈N
(i) Reflexive : Let x∈N ∴2x2−3x⋅x+x2=2x2−3x2+x2=0 ∴xRx ∴R is Reflexive.
(ii) Symmetric : Let x,y∈N, such that (x,y)∈R ∴(x,y)∈R⇒2x2−3xy+y2=0 ⇒2y2−3xy+x2=0∀x=y ⇒(y,x)∈/R (x,y)∈R but (y,x)∈/R ∴R is not symmetric.