Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The relation R defined on set A = x: | x | < 3, x ∈ I by R = (x, y): y = | x | is
Q. The relation
R
defined on set
A
=
{
x
:
∣
x
∣
<
3
,
x
∈
I
}
by
R
=
{(
x
,
y
)
:
y
=
∣
x
∣
}
is
3223
216
VITEEE
VITEEE 2013
Relations and Functions
Report Error
A
{
−
2
,
2
)
,
(
−
1
,
1
)
,
(
0
,
0
)
,
(
1
,
1
)
,
(
2
,
2
)}
46%
B
(
−
2
,
−
2
)
,
(
−
2
,
2
)
,
(
−
1
,
1
)
,
(
0
,
0
)
,
(
1
,
−
2
)
,
(
1
,
2
)
,
(
2
,
−
1
)
,
(
2
,
−
2
)
25%
C
{
0
,
0
)
,
(
1
,
1
)
,
(
2
,
2
)}
11%
D
None of the above
19%
Solution:
Given, set is
A
=
{
x
:
∣
x
∣
<
3
,
x
∈
I
}
A
=
{
x
:
−
3
<
x
<
3
,
x
∈
I
}
=
{
−
2
,
−
1
,
0
,
1
}
Also,
R
=
{(
x
,
y
)
:
y
=
∣
x
∣
}
∴
R
=
{(
−
2
,
2
)
,
(
−
1
,
1
)
,
(
1
,
1
)
,
(
0
,
0
)
,
(
2
,
2
)}