If z is purely real, then the coefficient of imaginary part will be zero. Let z=1+2isinα1−isinα =1+2isinα1−isinα×(1−2isinα)(1−2isinα) =1+4sin2α1−2sin2α−3isinα =1+4sin2α(1−2sin2α)−3isinα
Since, z is real, therefore the coefficient of imaginary part will be zero. ⇒3sinα=0 ⇒α=nπ,<br/><br/> where n is integer