cos7x+sin4x=1 ⇒cos7x(1−cos2x)2=1 ⇒cos7x+1+cos4x−2cos2x=1 ⇒cos7x+1+cos4x−2cos2x=1 ⇒cos7x+cos4x−2cos2x=0 ⇒cos2x[cos5x+cos2x−2]=0
If cos2x = 0, then x=nπ±2π,n∈I ∴x=±2π[∵−π<x<π]
and if cos3x+cos2x−2 = 0,
then x = 0 is the only possible case.
Hence real roots are −1π,0,2π