Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The ratio of the maximum and minimum attained by the function f(x)=1+2 sin x+3 cos 2 x, 0 ≤ x ≤ (2 π/3) is
Q. The ratio of the maximum and minimum attained by the function
f
(
x
)
=
1
+
2
sin
x
+
3
cos
2
x
,
0
≤
x
≤
3
2
π
is
2012
232
TS EAMCET 2020
Report Error
A
3
:
1
B
13
:
9
C
9
:
4
D
8
:
13
Solution:
Given,
f
(
x
)
=
1
+
2
sin
x
+
3
cos
2
x
f
(
x
)
=
1
+
2
sin
x
+
3
−
3
sin
2
x
f
(
x
)
=
4
−
3
(
sin
2
x
−
3
2
sin
x
+
9
1
)
+
3
1
f
(
x
)
=
3
13
−
3
(
sin
x
−
3
1
)
2
Maximum value of
f
(
x
)
=
3
13
at
sin
x
=
3
1
Minimum value of
f
(
x
)
=
3
9
at
sin
x
=
1
x
∈
[
0
,
3
2
π
]
∴
Ratio of Maximum to Minimum
13
:
9
.