Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The ratio in which the x-axis divides the area of the region bounded by the curves y = x2 - 4x and y= 2x - x2 is
Q. The ratio in which the
x
-axis divides the area of the region bounded by the curves
y
=
x
2
−
4
x
and
y
=
2
x
−
x
2
is
3175
167
Application of Integrals
Report Error
A
4
:
23
100%
B
4
:
27
0%
C
4
:
19
0%
D
none of these
0%
Solution:
We have,
y
=
x
2
−
4
x
…
(
i
)
and
y
=
2
x
−
x
2
…
(
ii
)
Both are parabolas.
Solving
(
i
)
and
(
ii
)
, we get
x
2
−
4
x
=
2
x
−
x
2
⇒
x
=
0
or
x
=
3
A
1
=
0
∫
2
(
2
x
−
x
2
)
d
x
=
3
4
A
2
=
0
∫
2
(
x
2
−
4
x
)
d
x
+
2
∫
3
[
(
2
x
−
x
2
)
−
(
x
2
−
4
x
)
]
d
x
=
3
x
3
−
2
4
x
2
∣
∣
0
2
+
2
∫
3
(
6
x
−
2
x
2
)
d
x
=
∣
∣
3
8
−
24
∣
∣
+
∣
∣
2
6
x
2
−
3
2
x
3
∣
∣
2
3
=
∣
∣
3
−
16
∣
∣
+
[
(
27
−
18
)
−
(
12
−
3
16
)
]
=
3
16
+
3
7
=
3
23
∴
Required ratio
=
A
2
A
1
=
3
4
:
3
23
=
4
:
23