Q.
The range of the function f(x)=sin−1[x2−31]−cos−1[x2+32] is (where, [x] represents the greatest integer value of x )
2513
233
NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions
Report Error
Solution:
[x2−31]=[x2+32−1]=[x2+32]−1=k(let)
Now, the function is sin−1k−cos−1(k+1)
For the above function to be defined, −1≤k≤1&−1≤(k+1)≤1 ∴k={−1,0} ∴ Range ={sin−1(−1)−cos−1(0),sin−1(0)−cos−1(1)}={−π,0}