f(x)=log5 (3+cos(43π+x)+cos(4π+x)+cos(4π−x)−cos(43π−x)) f(x)=log5[3+2cos(4π)cos(x)−2sin(43π)sin(x)] f(x)=log5[3+2(cosx−sinx)]
Since −2≤cosx−sinx≤2 ⇒log5[3+2(−2)≤f(x)≤log5[3+2(2)]] ⇒log5(1)≤f(x)≤log5(5)
So Range of f(x) is [0,2]