The pair of straight line 2x2βxyβ3y2+6x+y+4=0 β2x2+(βy+6)x+(β3y2+y+4)=0 β΄x=2Γ2(yβ6)Β±(yβ6)6β4Γ2(β3y2+y+4)ββ =4(yβ6)Β±y2+36β12y+24y2β8yβ32ββ =4(yβ6)Β±25y2+4β20yββ =4(yβ6)Β±(5yβ2)2ββ x=4(yβ6)Β±(5yβ2)β
So, x=4yβ6+(5yβ2)β and x=4yβ6β5y+2β β4x=6yβ8Β andΒ 4x=β4yβ4 β2xβ3y+4=0 and x+y+1=0
Now, product length of perpendicular from (β1,5) to both lines are P1ββ P2β=β£β£β22+(β3)2ββ2β3(5)+4ββ£β£ββ£β£β12+12ββ1+5+1ββ£β£β =13β13βΓ2β5β=26β65β